iterated equation - definitie. Wat is iterated equation
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is iterated equation - definitie

METHOD ALLOWING THE CONSTRUCTION OF SELF-SIMILAR FRACTALS
Iterated function systems; Iterated Function System; Iterated Function Systems
  • Construction of an IFS by the [[chaos game]] (animated)
  • Apophysis]] software and rendered by the [[Electric Sheep]].
  • IFS "tree" constructed with non-linear function Julia
  • [[Barnsley's fern]], an early IFS
  • IFS being made with two functions.
  • [[Menger sponge]], a 3-Dimensional IFS.
  • [[Sierpinski triangle]] created using IFS (colored to illustrate self-similar structure)

Iterated Function System         
<graphics> (IFS) A class of fractals that yield natural-looking forms like ferns or snowflakes. Iterated Function Systems use a very easy transformation that is done recursively. (1998-04-04)
Iterated function system         
In mathematics, iterated function systems (IFSs) are a method of constructing fractals; the resulting fractals are often self-similar. IFS fractals are more related to set theory than fractal geometry.
Schrödinger equation         
  • [[Erwin Schrödinger]]
  • 1-dimensional potential energy box (or infinite potential well)
  • spring]], oscillates back and forth. (C–H) are six solutions to the Schrödinger Equation for this situation. The horizontal axis is position, the vertical axis is the real part (blue) or imaginary part (red) of the [[wave function]]. [[Stationary state]]s, or energy eigenstates, which are solutions to the time-independent Schrödinger equation, are shown in C, D, E, F, but not G or H.
  • harmonic oscillator]]. Left: The real part (blue) and imaginary part (red) of the wave function. Right: The [[probability distribution]] of finding the particle with this wave function at a given position. The top two rows are examples of '''[[stationary state]]s''', which correspond to [[standing wave]]s. The bottom row is an example of a state which is ''not'' a stationary state. The right column illustrates why stationary states are called "stationary".
  • 1=''V'' = 0}}. In other words, this corresponds to a particle traveling freely through empty space.
PARTIAL DIFFERENTIAL EQUATION DESCRIBING HOW THE QUANTUM STATE OF A NON-RELATIVISTIC PHYSICAL SYSTEM CHANGES WITH TIME
Schrodingers equation; Schroedinger's equation; Schroedinger equation; Schrödinger Wave Equation; Schrodinger's equation; Schrödinger wave equation; Schrödinger's equation; Schrödinger-equation; Schrödinger Equation; Schrödinger's wave equation; TDSE; Time-independent Schrödinger equation; Time-independent Schrodinger equation; Time-independent schrödinger equation; Time-independent schrodinger equation; Schrodinger Equation; Shrodinger equation; Shrodinger's equation; Schroedinger Equation; Sherdinger's equation; Shredinger's equation; Sherdinger equation; Shredinger equation; Schrodinger's wave equation; Schrodinger`s equation; Schrodiner`s equation; Erwin Schrodinger's wave model; Time independent Schrödinger equation; Schroedinger wave equation; Time-independent Schroedinger equation; Schrodinger Wave Equation; Schroedinger Wave Equation; Schroedinger's wave equation; Time independent Schroedinger equation; Schrodinger-equation; Time independent Schrodinger equation; Time-independent schroedinger equation; Schroedinger-equation; Schrodinger wave equation; Schrodinger equation; TISE; Schrodinger operator; Schrödinger’s equation; Schrodinger's Wave Equation; Schrödinger's Wave Equation; Schrodinger's Equation; Schrödinger's Equation; Schrodinger model; Schrödinger model; Non-Relativistic Schrodinger Wave Equation; Time-dependent Schrödinger equation; Schrodinger’s equation; Schrodenger equation
The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. It is a key result in quantum mechanics, and its discovery was a significant landmark in the development of the subject.

Wikipedia

Iterated function system

In mathematics, iterated function systems (IFSs) are a method of constructing fractals; the resulting fractals are often self-similar. IFS fractals are more related to set theory than fractal geometry. They were introduced in 1981.

IFS fractals, as they are normally called, can be of any number of dimensions, but are commonly computed and drawn in 2D. The fractal is made up of the union of several copies of itself, each copy being transformed by a function (hence "function system"). The canonical example is the Sierpiński triangle. The functions are normally contractive, which means they bring points closer together and make shapes smaller. Hence, the shape of an IFS fractal is made up of several possibly-overlapping smaller copies of itself, each of which is also made up of copies of itself, ad infinitum. This is the source of its self-similar fractal nature.